Ecology and Engineering – a perfect match?

If ecology and engineering would meet at an evening speed-dating event, they might not immediately fall in love with each other. On a quick glance, they seem to be too different. However, later at night, when lying in bed back at home and trying to catch some sleep, chances are that both would start pondering about the other.

Engineering offers a long experience in problem solving and the rigor and power of the methods used for it. Ecology offers deep insights into natural processes and the methods to analyze and quantify them. The application of engineering methods often affects the subjects of study of ecology, while changes in ecology may in turn affect engineered systems. If these two would marry, both fields could benefit from each other.

This becomes obvious in cases where both of the fields meet directly. Decommissioned mining sites – a left-behind of engineering activities – illustrate how difficult it can be to restore ecosystems. Often the hydrological cycle was fundamentally altered by the mining acivities. The migration routes of large animals were interrupted. The original fauna and flora were removed, together with the humus. In addition, abandoned mine tailings release acidic water into the environment – an almost unstoppable microbiological process. Engineers tend to be overstrained with this problem, because they may lack ecological understanding. On the other hand, even if ecologists knew what could be done, they often wouldn’t know how to do it. Both of them need each other.

The same phenomenon, just a little less obvious, can be observed in cities. Cities keep growing rapidly in almost all parts of the globe. Their urban water management practice is usually heavily built on an old invention, the sewer. Sewers allow to quickly drain away water from human infrastructures, carrying with them human fecal matter, industrial and hospital effluents, road runoff and a lot of other unwanted things. This is beneficial for the cities but causes a lot of problems dowstream. In many places on the world, the wastewater is just discharged directly to natural waters. This practice produces a lot of harm in these environments. Even if treatment exists, nutrients are usually not recovered.

Ecology offers some fundamental opportunities to engineering: A profound understanding of ecosystems, natural cycles, their functions and their properties; the capability to think in different scales; and system’s thinking, together with the tools to support it. In turn, engineering offers, e.g., the tools and practices to conceptualize, design and build infrastructures, the skills to develop new practices and devices needed for low- or zero energy cities and a closed-loop circular society.

I think, ecology and engineering are a perfect match! However, it’s a long way from nightly considerations to a wedding. Let’s have a closer look at this sprouting relationship in the next weeks. Stay tuned 😉

Why should engineers care about ecology?

Engineering as a field of practice has deep roots in human history. It dates back at least to the ancient Greeks, and might be much older. In ancient civilizations, the predecessors of engineers were probably craftsmen and artists. I believe that this eternal urge to do things better has always been their main driver. Since new solutions usually come through a long chain of trial and error, this is critical for success,

Current engineering practices in the Western world evolved since renaissance times. Mathematics, physics, chemistry and a diversity of other practical and scientific disciplines were increasingly included. Engineering is widely ramified today. All fields of engineering encompass a large formalized body of knowledge and practices, which is carefully guarded by engineering boards.

Engineering has become the single most important human practice on Earth. Compared to earlier ages, the potential impact of engineering has drastically increased in scale. Successful engineering design may now lead to its global distribution in a very short time. Think, e.g., of new types of plastics, pharmaceuticals, anticorrosive coatings, or sunscreens based on nanoparticles. If such inventions are introduced into the global market, they often also enter the global ecological cycles. This may (and often does) lead to unforeseen and unintended consequences in ecosystems.

Almost all ecological processes on Earth are connected through material cycles. The tremendous amount of human activities and our high mobility accelerate the velocity of material distribution through these cycles. The global biosphere is now changing in an unprecedented way. Nature has sustained life on Earth for more than a billion years, in spite of disasters of all kinds. Do we really want to find out by trial and error, if it can continue sustain us?

Forming a sustainable human civilization is the greatest challenge we face today. As a civilization, we need to understand how we – a biological being and part of nature – can co-exist with all the other biological beings in nature in a healthy and sustainable way. The science of ecology has been unraveling and trying to understand the incredibly flexible, yet resilient web of life on Earth. The principles and processes found by ecologists can inform engineers and inspire a new kind of truly sustainable design. This is why engineers should care about ecology.

After all, we are dealing with our own life-support system! In the following weeks, I want to explore how an ecologically inspired practice of engineering might look like.